Common Pediatric Orthopeadics Risk management

Pairatch Prasongchin MD. Department of Orthopaedic Surgery Faculty of Medicine Chulalongkorn University.

METATARSUS

HEEL VARUS (from behind) HEEL VALGUS (from behind)

HALLUX VALGUS

Terminology

Table I Terminology of foot and ankle movement

Joint	Movement	Deformity
Ankle	Dorsiflexion	Calcaneus
	Plantar flexion	Equinus
Subtalar	Inversion	Varus
	Eversion	Valgus
Mid tarsal	Abduction	Abduction
	Adduction	Adduction
	Pronation	
	Supination	

Pediatric Orthopaedic

The Infant

The Toddler

The Child

The Infant

Common problem
1. Congenital malformation (Manufacturing defect)
2. Postural deformities (defect) (Packaging defect)

Packaging defect(Postural defect)1. Prenatal defect

2. Postural defect (Postnatal)

Post natal defect (cont.)

Manufacturing defect

Manufacturing defect

Normal Posture at Birth

Normal posture at birth

• Hip (flexion contracture 20°)

Normal posture at birth

(Flexion contracture 20°)

Normal posture at birth

Metatarsus varus

Metatarsus varus

Diagnosis

Heel bisector

Diagnosis

Clinical assessments & X-ray

Clinical diagnosis &evaluation

Clinical diagnosis &evaluation

Metatarsus primus varus

Management

Natural history
Spontaneous resolution
Stretching exercise
Casting
Shoe modification

Natural history Spontaneous resolution Persistent deformity

Management

Clinical assessment

Severity vs. prognosis

Management Prevention

Table II Ponseti & Becker (J Bone Joint Surg. 48-A;1966:702)

year	metatarsus <u>adductus</u>	clubfoot
	(varus)	
1910-1920	2	126
1921-1930	12	299
1931-1940	49	361
1941-1950	201	360
1951-1960	267	347
1961-1963	105	78

Prevention

Management Spontaneous resolution

: The infant

ManagementDennis Brown sprint

Management : The infant Manipulation Manipulation& casting

Metatarsus varus The child

Management Shoe modification

Why not shoe modification ?
Bonsai?

The child

- Management
- Surgery

Drawback of corrective shoes &shoes modification

 Inferiority complex in body image & selfesteems

Postural clubfoot

- Postural clubfoot
- Differential diagnosis

- Management
- Spontaneous resolution
- Manipulation& casting

Postural talipes calcaneovalgus

Talipes calcaneovalgus

Management Spontaneous resolution

Postural talipes calcaneovalgus

Management
Manipulation & casting

Differential diagnosis 1.Postural genu recurvatum 2.Congenital dislocation of patella 3.Congenital dislocation of knee joint

Packaging defect Genu recurvatum

Etiology

Management : Differential diagnosis Grade 1 hyperextension 15-20° Grade 2 hyperextension 25-45° Grade 3 hyperextension >45°

Manipulation & serial casting

Surgery

Pre & post natal packaging defect

External rotation of the hip

Etiology Short hip external rotator

 Management almost always complete resolution

Because 60% of gait cycle are internal rotate

In children

looking for neuromuscular disorder

Packaging defect Post natal defect

Mold child syndrome Clinical picture 1.Plagiocephaly 2.Bat ear 3.C-shape scoliosis 4.Asymmetric rib cage 5. Hip adduction contracture

Mold child syndrome

Plagiocephaly

Mold child syndrome

C-shape scoliosis

Mold child syndrome

Hip adduction contracture

Manufacturing Defects

• Rigid (Idiopathic) club foot

Natural History

Persistent deformity

Manufacturing Defects

Rigid clubfoot

- Conservative
 - (Manipulation &

taping &

Casting

 Manipulation & DB. splint

Surgery

Conservative

taping

Conservative treatment strapping & DB. splint

External fixator

Timing for Surgery

9 Months

(I prefer)

Gait abnormality

Standing posture 2 years olds

- 1. Wild base
- 2. Toe-out
- 3. Lumbar lordosis
- 4. Bulging belly
- 5. Flexed hips, flexed knees

Normal gait

Start at 2 yearsComplete at 7 years

Abnormal gait

- Etiology
- 1. Increase femoral ante version
- 2. Increase internal tibial torsion
- 3. Metatarsus varus
- 4. Neuromuscular disorder
- 5. Gait compensation

Increase femoral ante version

Increase internal tibial torsion

Toe-in ga

Metatarsus varus

Neuromuscular disorder

Compensatory gait

Bow leg

management

Natural history

1. Increase femoral ante version

Spontaneous resolution

Shoe modifications and braces do not work for femoral torsion. They can make the child uncom-

2. Increase internal tibial torsion very rarely

3. Metatarsus varus

Spontaneous resolution

4.Neuromuscular disorder

5.Bow leg

Spontaneous resolution in 2 years.

Cause of toe-out gait
 Normal posture of the toddler
 External rotation of tibia
 Talipes calcaneovalgus
 Compensatory gait

1. normal posture of the toddler

Complete resolution

2. External rotation of tibia

Neuromuscular disorder (Spinabifida) consult

Talipes calcaneovalgus

Almost always complete resolution (except neuromuscular & congenital joint laxity)

Knock knees symmetry Complete resolution

except (Consult)

What is "Flat Foot" ?

Which one is flat foot ?

Foot print

Diagnosis Foot print

Foot Print

The problem of foot print

A brief neurological examination

- DTR
- Muscle tone (R/O CP)
- Spine for possible skin defects, scoliosis

Physical Examination

Inspect and palpate

the arch with the child

weight-bearing.

Hick's test

Hick' s test

The other test

Physical exam in children

Physical Examination

Tight heel-cord

 Lock talonavicular joint in to inversion before passively dorsiflex the

foot.

Why Flat Feet Needed Treatment ?

Flat Foot Problem

Foot pain

Shoe wear and tear

Cosmetics

Are All Flat Foot

Need Treatment?

Flat foot (cosmetics)

The parents are justifiably concerned because often they had been treated in childhood for the same condition.

They assume their improvement resulted from treatment and now want the same for their child, only earlier and better.

Natural History

Children between age
 1-4 years have
 flatfeet, because a
 deposit of fat in the
 medial arch.

Natural History

Many authors have
 noted the gradual
 spontaneous
 development of foot
 arch in children.

Natural History

 A review of Canadian soldiers suggested an incidence of 14% flatfeet in young adult recruit.

Flatfoot Management
Evolution of Treatment

Evolution of treatment

Current Concept of Flatfoot Management

R/O Pathologic flatfoot

- Congenital vertical talus
- Tight heel cord

Flexible Flatfoot

management

Management of Flexible Flatfoot

- Child with few or no symptoms
 - It will improve over time, whether or not it is treated.

Wenger DR, et al. (JBJS 1989;71A:800-810)

Prospective randomized trial of flatfoot treatment in children age 1-6 years.
The arch improved to the same degree in all groups.

Management of flexible flat foot

The flatfoot in untreated control patients had clear radiographic improvement in the longitudinal arch between age 1 and 6 years.

Flatfoot Management

Conservative Rx
Shoe modification
UCBL plastic shoe insert
Surgery
For symptomatic flexible flatfoot

Corrective Shoes

Corrective Shoes

- Medial heel wedge
 - correct heel varus)
- Outer (lateral) sole wedge
 - correct pronate forefoot
- Navicular arch support (cookie or navicular pad)
 Strong medial counter

Corrective Shoes

 Sturdy high-top leather shoe with an extend medial counter, Thomas heel and scaphoid pad.

Flat foot management

Plastic shoe insert

- 1. Custom-molded
- 2. Helfet
- 3. UCBL
- 4. Whitman plate

Custom-molded

Plastic shoe insert

Helfet Heel Cup

Although an arch support can actually improve the arch with weight-bearing, it is unclear how long this effect lasts in an active 2-5 year-old child, the most common age for flatfoot treatment.

Objections to Treatment with Special shoes and Inserts

Children do not like to wear shoes

Objections to Treatment with Special Shoes and Inserts

 It is difficult to keep a tight exact fit in a rapid growing child.

Problem

- The foot is theoretically growing in 24 hours a day
- The children is sleeping or resting 12 hours a day.
- Sitting either at home or in school 6 hours a day.

Problem

 In the remaining active hours the child is in the stance phase only for 1-2 hours.

Objection to corrective shoe

Inferiority complex in body image & self esteems.

Wearing a pad under the arch of a simple hypermobile flatfoot may make the child less comfortable

Flat foot management

Surgery

Surgical Option

Heel cord lengthening
Calcaneal osteotomy
Subtalar fusion
Tripple arthrodesis

• Tripple arthrodesis

surgery

• Heel cord lengthening

surgery

Calcaneal Osteotomy

Subtarlar fusion

Surgical correction for flat foot

Tripple Arthrodesis

Rigid flat foot The Painful Flatfoot

Angular deformity of lower limb

The Normal Evolution of Leg Shape

VARUS AGE IN YEARS VALGUS

Bowleg & Knock Knees

Bowleg

SE

MAR

MM

The second secon
Type of bow leg

Apparent tibial

torsion

Distal incurvation
 of the tibia

Bow leg

Natural history

Normal evolution of legs

Management of Severe Bow Leg

Angle Measurement

Metaphyseal-

Diaphyseal Angle

• Drennan's Angle

Severe bow leg

Femoral metaphyseal-diaphyseal angle / tibial metaphyseal-diaphyseal angle < 1
It means that the angular deformity is at proximal tibia.

Children age > 2 yr FT Angular deformity > 11°

Severe bow leg

Management

- 1. Bracing
- 2. Casting
- 3. Surgery
- 4. DB.Splint

management

casting

casting

Post casting

Post casting

Bow legs

• DB.Splint

Severe bow leg

surgery

Complication of casting

Severe varus

Blount[,] s
 disease

Blount's disease

Knock knees

Natural history

Asymmetrical genu valga

management

consult

Surgery for severe genu valga

Thank you