

Degenerative joint disease (DJD)

รศ.นพ.อารี ตนาวลี Aree Tanavalee, MD Associate Professor Department of Orthopaedics Faculty of Medicine Chulalongkorn University

What is DJD?

- Commonly known
 - Osteoarthritis, Osteoarthrosis
- Disease character:
 - Different etiologies
 - Similar findings
 - Biologic
 - Morphologic
 - Clinical outcomes

What is DJD?

- Articular cartilage
 - Progressive loss
- Subchondral bone
 - Remodeling, sclerosis
 - Bone cysts, osteophytes

What is DJD?

- Ligament
 - Attenuation

Synovium and capsule

- Thickening

Definition: DJD (Osteoarthritis)

- Progressive disorder of the joints caused by
 - Gradual loss of cartilage
 - Reactive changes of bone
- Leading to joint
 - Destruction
 - Painful malfunction

- Cartilage
- 3. Thinning of cartilage

5. Destruction of cartilage

Prevalence

- Clinically defined OA.
 - on the basis of symptoms and physical examination findings
 - Ages 25-74years
 - 12.1% of the US population
- Radiographically defined OA

 According to the Kellgren/Lawrence scale (presence of osteophytes)

Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58(1):26–35.

Symptomatic OA

Anatomic site, age, years		% with symptomatic OA		
	Source (ref.)	Male	Female	Total
Hands, ≥26 Knees	Framingham OA study (6)	3.8	9.2	6.8
≥26	Framingham OA study (5)	4.6	4.9	4.9
≥45	Framingham OA study (5)	5.9	7.2	6.7
≥45	Johnston County OA Project (7)	13.5	18.7	16.7
≥60	NHANES III (4)	10.0	13.6	12.1
Hips, ≥45	Johnston County OA Project (10)	8.7	9.3	9.2

Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58(1):26–35.

Radiographic OA

Anatomic site, age, years	Source (ref.)	% with mild, moderate, or severe OA			
		Male	Female	Total	
Hands, ≥26	Framingham OA study (6)	25.9	28.2	27.2	
Knees†	• • • • •				
≥26	Framingham OA study (5)	14.1	13.7	13.8	
≥45	Framingham OA study (5)	18.6	19.3	19.2	
≥45	Johnston County OA Project (7)	24.3	30.1	27.8	
≥60	NHANES III (4)	31.2	42.1	37.4	
Hips, ≥45	Johnston County OA Project (10)	25.7	26.9	27.0	

Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58(1):26–35.

Comparing OA diagnosis

Anatomic site,		S	R	
age, years	Source (ref.)	Tota	I Total	
Hands, ≥26 Knees	Framingham OA study (6)	6.8	27.2	7
≥26	Framingham OA study (5)	4.9		
≥45 ≥45	Framingham OA study (5) Johnston County OA Project (7)	6.7 16.7		3
≥60 Hips, ≥45	NHANES III (4) Johnston County OA Project (10)	12.1 9.2	37.4	3

Higher prevalence of OA

- Genetic mutation
 - Mutation in type II collagen
- Heritability
 - Radiographic OA of hands & knees
 - <mark>39-6</mark>5%
- Knee
 - History of meniscectomy
 - Repetitive kneeling and squatting

Fact of OA

- Obvious gross evidence
 - Radiological OA in \ge 3 joints
 - > 20% no history of joint pain
- No gross evidence
 - Etiology of pain is elusive
 - MRI & pain
 - Effusion
 - Bone edema
 - Thickened synovium

Functional limitation caused by DJD

Normal joint

- Painless
- Mobile
- Stable

Mature articular cartilage

- 5 layers
 - Avascular
 - Aneural
 - Alymphatic
- Matrix
- Chondrocyte
- Nutrients
 - Diffusion
 - Synovial fluid

Articular cartilage structure

5%

- Complex extracellular matrix 95% ricular cartilage
 - Water: 65-80%
 - Collagen 10-20%
 - Type II 90-95%
 - Type V, VI, IX, X and XI
 - Proteoglycans 10-15%
- Cellular component

Proteoglycans

- Large macromolecules
- Produced by chondrocyte
- Chains of glycosaminoglycans (GAGs) attached to a linear core protein

Glycosaminoglycans (GAGs)

Disaccharide polymer

- Chondroitin sulfate
- Keratan sulfate
- Dermatan sulfate
- Heparan sulfate
- Hyaluronic acid

Articular cartilage function

- Water
 - Deformation of cartilage surface due to stress
 - Nutrition
- Collagen
 - Framework strength
 - Tensile strength
- Proteoglycans or aggrecan molecules
 - Negatively charged hydrophilic
 - Compressive strength
- Chondrocytes
 - Matrix and collagen

Normal articular cartilage

- Load distribution
- Decrease friction
- Resistance to compressive, tensile, and shear forces
- Minimizing loads on subchondral bone

What causes DJD?

- Unknown cause
- Proteoglycans
 - Increase >> decrease
 - Shorter chain
- Water
 - Increase
- Biomechanical properties
 - Decrease

Pathology of DJD

Pathology of DJD

Pathology of DJD

- Fissuring and focal erosive cartilage lesions
- Cartilage loss and destruction
- Subchondral bone sclerosis and cyst
- Large osteophyte formation

Subchondral bone change

- Bone marrow
 edema
- Subchondral sclerosis
- Osteophyte

Increase forces to bone from diminished cartilage elasticity

Bone microfractures

Injury

Increase in bone turnover

Increase Osteoblast Activity Increase Osteoclast activity Increase TGF-ß Increase BMP, IGF, PDGF Osteophyte formation, Increase surface for load bearing Subchondral sclerosis

What contributes poor articular cartilage repair?

- High ratio of matrix/ cellular components

 Poor ability of cartilage to repair
- Low mitotic activity of chondrocytes
 - Negligible healing of cartilage

What are risk factors for OA

- Older age
- Female sex
- Repetitive stress and joint overload
- Genetic factors
- Major trauma
- Obesity
- Prior inflammatory joint disease
- Metabolic disorder
- Proprioceptive defects

Etiologic factors in OA

 Normal load

 Abnormal biomaterial (joint vulnerability)

Joint vulnerability

- Systemic factors
 - Age
 - Gender
 - Genetic
- Local factors
 - Joint deformity
 - Malalignment
 - Previous injury of joint protective structures

- Normal biomaterial
 - Excessive mechanical stress (excessive joint loading)

What are the symptoms of DJD?

- With or without symptoms for a long time
- Symptoms
 - Subtle development of morning stiffness
 - Pain with movement and activity
 - Improve with rest
 - Decreased range of motion
 - Abnormal sound
 - Unstable joints

How is DJD diagnosed?

Symptoms and signs

- Joint pain
- Restriction of motion
- Crepitus with motion
- Joint effusions
- Deformity
- Instability
- Radiography
 - Abnormal findings

Radiographic findings

- Subchondral bone changes
 - Osteophyte
 - Cyst formation
 - Sclerosis
- Narrowed joint spaces
- Deformity

Classification

Primary or idiopathic

- Most common type
- No identifiable etiology or predisposing cause
- Secondary

Identifiable underlying cause

Primary OA

- Idiopathic
- Strong family history
- Alterations in structural macromolecules
- Mutations in the type II collagen gene
- Progressive wear and tear degenerative condition

Primary OA

- Common
 - Knee
 - Spine
 - Hip
 - IPJ of hand
 IPJ of foot

Primary OA: knee

- No relationship
 - Premature arthrosis VS activity levels
- Signs &symptoms
 - Pain
 - Stiffness
 - Swelling
 - Limited ROM
 - Limping
 - Crepitation
 - Deformity

Primary OA: knee

Primary OA: knee

Primary OA: knee

Spine

- Spondylosis
 - Pain
 - Stiffness
 - Limited ROM
 - Deformity
 - Radiculopathy
 - Myelopathy

Spine

Primary OA: hip

- Pain
- Stiffness
- Limited ROM
- Limping

Primary OA: hip

Primary OA: hand & finger

- Pain
- Swelling
- Limited ROM
- Heberden's nodes
- Bouchard's nodes

Primary OA: other joints

- Direct response
 - Abnormal mechanical loading with articular cartilage
- Various causes
 - Metabolic condition
 - Anatomic factors
 - Traumatic events
 - Inflammatory disorders

Cause of 2º OA	Presumed mechanism
Intra-articular Fx	Damage to cartilage / joint incongruity
High intensity impact joint loading	Damage to cartilage / subchondral bone
Ligament injury	Joint instability
Joint dysplasia	Abnormal joint shape / abnormal cartilage
Aseptic necrosis	Collapse of articular surface / joint incongruity
Joint infection	Destruction of cartilage

Cause of 2º OA	Presumed mechanism
Crystal deposition	Accumulation of crystal in cartilage
Ochronosis	Deposition of homogentisic acid polymer in cartilage
Hemochromatosis	Unknown
Hemophilia	Multiple joint hemorrhage
Acromegaly	Overgrowth of cartilage produce joint incongruity
Paget's disease	Distortion or incongruity of joint

Cause of 2º OA	Presumed mechanism
Ehlers-Danlos syndrome	Joint instability
Gaucher's disease	Bone necrosis or pathologic Fx leading to joint incongruity
Stickler's syndrome	Abnormal joint / cartilage development
Neuropathic arthropathy	Loss of proprioception and sensation result in increase impact loading and torsion ,instability, articular Fx

How is DJD treated?

Goal of treatment

- Decrease pain
- Muscle strengthening
- Improve or maintain joint function
 - Activity of daily living
 - Sports activity

Activity modification

- Activity modification
- Analgesics
- Nonsteroidal antiinflammatory drugs (NSAIDs)
- Appropriate physical therapy
- Weight loss
- Low impact exercise
- SySADOA

- SySADOA
- Symptomatic Slow Acting Drug for Osteoarthritis
 - Glucosamine
 - Chondroitin
 - Diacerein
 - Hyalulonic acid injection

Intra-articular administration of hyaluronic acid

Arthroscopy

- Early symptom
- Mild pathology –less deformity
- Mechanical causes

Realignment osteotomy

Normalizes the biomechanical loads on the involved joint

Normal

Realignment osteotomy

 Normalizes the biomechanical loads on the involved joint

- Autogenous chondrocyte
 transplantation
 - Isolated, limited size (2- 7 cm²) chondral defects
- Osteochondral autografts "mosaicplasty"
 - Autografts of up to 10 mm is transferred into prepared defects

- Knee arthroplasty
 - Unicompartmental knee arthroplasty
 - Total knee arthroplasty

 Conventional total knee replacement (arthroplasty)

Unicompartmental knee replacement
 (arthroplasty)

Total hip replacement (arthroplasty)

Conventinal surgical technique

Minimally invasive surgical technique

Thank you

